Applications of the PDBbind-CN database
Selected Applications of the PDBbind Database 2016 (1) Bansal, N.; Zheng, Z.; Merz, K. M. Jr. Incorporation of side chain flexibility into protein binding pockets using MTflex. Bioorg. Med. Chem., 2016, 24, 4978-4987. (2) Greenidge, P.A.; Lewis, R. A.; Ertl, P. Boosting Pose Ranking Performance via Rescoring with MM-GBSA. Chem. Biol. Drug Des., 2016, 88, 317-328. (3) Grudinin, S.; Kadukova, M.; Eisenbarth, A.; Marillet, S.; Cazals, F. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation. J. Comput. Aided. Mol. Des. 2016, 30, 791-804. (4) Grudinin, S.; Popov, P.; Neveu, E.; Cheremovskiy, G. Predicting Binding Poses and Affinities in the CSAR 2013-2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential. J. Chem. Inf. Model. 2016, 56, 1053-1062. (5) Hao, G. F.; Jiang, W.; Ye, Y. N.; Wu, F. X.; Zhu, X. L.; Guo, F. B.; Yang, G. F. ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Res. 2016, 44, W550-W556. (6) Kadukova, M.; Grudinin, S. Knodle: A Support Vector Machines-Based Automatic Perception of Organic Molecules from 3D Coordinates. J. Chem. Inf. Model. 2016, 56, 1410-1419. (7) Luo, H.; Zhang, P.; Cao, X. H.; Du, D.; Ye, H.; Huang, H.; Li, C.; Qin, S.; Wan, C.; Shi, L.; He, L.; Yang, L. DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome. Sci Rep., 2016, 6, 35996. (8) Piotto, S.; Di Biasi, L.; Fino, R.; Parisi, R.; Sessa, L.; Concilio, S. Yada: a novel tool for molecular docking calculations. J. Comput. Aided. Mol. Des. 2016, 30, 753-759. (9) Wang, C.; Nguyen, P. H.; Pham, K.; Huynh, D.; Le, T. B.; Wang, H.; Ren, P.; Luo, R. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem., 2016, 37, 2436-2446. (10) Yan, C.; Grinter, S. Z.; Merideth, B. R.; Ma, Z.; Zou, X. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks. J. Chem. Inf. Model. 2016, 56, 1013-1021. (11) Zang, P.; Gong, A.; Zhang, P.; Yu, J. Targeting druggable enzymome by exploiting natural medicines: An in silico-in vitro integrated approach to combating multidrug resistance in bacterial infection. Pharm Biol., 2016, 54, 604-618. (12) Yan, Z. Q.; Wang, J. Incorporating specificity into optimization: evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks. J. Comput. Aided. Mol. Des. 2016, 30, 219-227. (13) Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys., 2016, 18, 12964-12975. (14) Tanchuk, V. Y.; Tanin, V. O.; Vovk, A. I.; Poda, G. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina. Chem. Biol. Drug Des., 2016, 87, 618-625. (15) Liu, X.; Liu, J.; Zhu, T.; Zhang, L.; He, X.; Zhang, J. Z. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity. J. Chem. Inf. Model. 2016, 56, 854-861. (16) Koebel, M. R.; Schmadeke, G.; Posner, R.G.; Sirimulla, S. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J. Cheminform., 2016, 8, 27. (17) Kim, S.; Thiessen, P. A.; Cheng, T.; Yu, B.; Shoemaker B. A.; Wang, J.; Bolton, E. E.; Wang, Y.; Bryant, S. H. Literature information in PubChem: associations between PubChem records and scientific articles. J. Cheminform., 2016, 8, 32. (18) Hain, E.; Camacho, C. J.; Koes, D. R. Fragment oriented molecular shapes. J. Mol. Graph. Model., 2016, 66, 143-154. (19) Gong, H. L.; Yuan, Z. C.; Zhan, L. P. High-throughput screening against 6.1 million structurally diverse, lead-like compounds to discover novel ROCK inhibitors for cerebral injury recovery. Mol. Divers., 2016, 20, 537-549. (20) Chen, A. S.; Westwood, N. J.; Brear, P.; Rogers, G. W.; Mavridis, L.; Mitchell, J. B. A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins. Mol. Inform., 2016, 35, 125-135. (21) Bolia, A.; Ozkan, S.B.; Adaptive BP-Dock: An Induced Fit Docking Approach for Full Receptor Flexibility. J. Chem. Inf. Model. 2016, 56, 734-746. (22) Basse, M. J.; Betzi, S.; Morelli, X.; Roche, P. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Database, 2016, 2016, baw007. 2015 (23) Zheng, Z.; Wang, T.; Li, P.; Merz, K. M. Jr. KECSA-Movable Type Implicit Solvation Model (KMTISM). J. Chem. Theory Comput., 2015, 11, 667-682. (24) Yilmazer, N. D.; Heitel, P.; Schwabe, T.; Korth, M. Benchmark of electronic structure methods for protein-ligand interactions based on high-level reference data. J. Theor. Comput. Chem., 2015, 14, 1540001. (25) Yang, Z.; Liu, Y.; Chen, Z.; Xu, Z.; Shi, J.; Chen, K.; Zhu, W. A quantum mechanics-based halogen bonding scoring function for protein-ligand interactions. J. Mol. Model., 2015, 21, 138. (26) Yan, Z. Q.; Wang, J. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Proteins: Struct. Funct. Bioinfor., 2015, 83, 1632-1642. (27) Wojcikowski, M.; Zielenkiewicz, P.; Siedlecki, P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J. Cheminform., 2015, 7. (28) Weber, J.; Achenbach, J.; Moser, D.; Proschak, E. VAMMPIRE-LORD: A Web Server for Straightforward Lead Optimization Using Matched Molecular Pairs. J. Chem. Inf. Model. 2015, 55, 207-213. (29) Wang, Y.; Guo, Y.; Kuang, Q.; Pu, X.; Ji, Y.; Zhang, Z.; Li, M. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach. J. Comput. Aided. Mol. Des. 2015, 29, 349-360. (30) Trepte, P.; Buntru, A.; Klockmeier, K.; Willmore, L.; Arumughan, A.; Secker, C.; Zenkner, M.; Brusendorf, L.; Rau, K.; Redel, A.; Wanker, E. E. DULIP: A Dual Luminescence-Based Co-Immunoprecipitation Assay for Interactome Mapping in Mammalian Cells. J. Mol. Biol., 2015, 427, 3375-3388. (31) Su, H.; Yan, J.; Xu, J.; Fan, X. Z.; Sun, X. L.; Chen, K.Y. Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension. Pharm. Biol., 2015, 53, 1201-1206. (32) Razzaghi-Asl, N.; Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Miri, R.; Shahabipour, S. Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor. Iran. J. Pharm. Res., 2015, 14, 785-802. (33) Qiu, J. X.; Zhou, Z. W.; He, Z. X.; Zhao, R. J.; Zhang, X.; Yang, L.; Zhou, S. F.; Mao, Z. F.; Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. Drug Des. Devel. Ther., 2015, 9 349-417. (34) Lizunov, A.Y.; Gonchar, A. L.; Zaitseva, N. I.; Zosimov, V. V. Accounting for Intraligand Interactions in Flexible Ligand Docking with a PMF-Based Scoring Function. J. Chem. Inf. Model. 2015, 55, 2121-2137. (35) Li, H. J.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest. Molecules, 2015, 20, 10947-10962. (36) Kothiwale, S.; Mendenhall, J. L.; Meiler, J. BCL::CONF: small molecule conformational sampling using a knowledge based rotamer library. J. Cheminform., 2015, 7. (37) Khamis, M.A.; Gomaa, W. Comparative assessment of machine-learning scoring functions on PDBbind 2013, Eng. Appl. Artif. Intel., 2015, 45 136-151. (38) He, W. H.; Shi, F.; Zhou, Z. W.; Li, B.; Zhang, K.; Zhang, X.; Ouyang, C.; Zhou, S. F.; Zhu, X. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver. Drug Des. Devel. Ther., 2015, 9, 3989-4104. (39) He, M.W.; Lee, P. S.; Sweeney, Z. K. Promiscuity and the Conformational Rearrangement of Drug-Like Molecules: Insight from the Protein Data Bank. Chemmedchem, 2015, 10, 238-244. (40) Gaudreault, F.; Najmanovich, R. J. FlexAID: Revisiting Docking on Non-Native-Complex Structures. J. Chem. Inf. Model. 2015, 55, 1323-1336. (41) Dias, R.; Kolazckowski, B. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy. Proteins: Struct. Funct. Bioinfor., 2015, 83, 2100-2114. (42) Degac, J.; Winter, U.; Helms, V. Graph-Based Clustering of Predicted Ligand-Binding Pockets on Protein Surfaces. J. Chem. Inf. Model. 2015, 55, 1944-1952. (43) Cui, Y. H.; Chen, J.; Xu, T.; Tian, H. L. Structure-based grafting and identification of kinase-inhibitors to target mTOR signaling pathway as potential therapeutics for glioblastoma. Comput. Biol. Chem., 2015, 54, 57-65. (44) Chartier, M.; Najmanovich, R. Detection of Binding Site Molecular Interaction Field Similarities. J. Chem. Inf. Model. 2015, 55, 1600-1615. (45) Bai, F.; Liao, S.; Gu, J.; Jiang, H.; Wang, X.; Li, H. An Accurate Metalloprotein-Specific Scoring Function and Molecular Docking Program Devised by a Dynamic Sampling and Iteration Optimization Strategy. J. Chem. Inf. Model. 2015, 55, 833-847. (46) Ashtawy, H. M.; Mahapatra, N. R. BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinformatics 2015, 16. (47) Ashtawy, H. M.; Mahapatra, N. R. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction. IEEE/ACM Trans Comput Biol Bioinform., 2015, 12, 335-347. (48) Ashtawy, H. M.; Mahapatra, N. R. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinformatics 2015, 16. (49) Alhossary, A.; Handoko, S. D.; Mu, Y.; Kwoh, C. K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 2015, 31, 2214-2216. 2014 (50) Zhao, H. Y.; Yang, Y.; von Itzstein, M.; Zhou, Y. Carbohydrate-Binding Protein Identification by Coupling Structural Similarity Searching with Binding Affinity Prediction. J. Comput. Chem., 2014, 35, 2177-2183. (51) Wang, X.; Chen, H.; Yang, F.; Gong, J.; Li, S.; Pei, J.; Liu, X.; Jiang, H.; Lai, L.; Li, H. iDrug: a web-accessible and interactive drug discovery and design platform. J. Cheminform., 2014, 6, 28. (52) Todoroff, N.; Kunze, J.; Schreuder, H.; Hessler, G.; Baringhaus, K. H.; Schneider, G. Fractal Dimensions of Macromolecular Structures. Mol. Inform., 2014, 33, 588-596. (53) Sun, H. Y.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys., 2014, 16, 16719-16729. (54) Su, J. H.; Chang, C.; Xiang, Q.; Zhou, Z. W.; Luo, R.; Yang, L.; He, Z. X.; Yang, H.; Li, J.; Bei, Y.; Xu, J.; Zhang, M.; Zhang, Q.; Su, Z.; Huang, Y.; Pang, J.; Zhou, S. F. Xyloketal B, a marine compound, acts on a network of molecular proteins and regulates the activity and expression of rat cytochrome P450 3a: a bioinformatic and animal study. Drug Des. Devel. Ther., 2014, 8, 2555-2602. (55) Singh, K. D.; Naveena, Q.; Karthikeyan, M. Jak2 inhibitor - a jackpot for pharmaceutical industries: a comprehensive computational method in the discovery of new potent Jak2 inhibitors. Mol. Biosyst., 2014, 10, 2146-2159. (56) Reddy, A.S.; Tan, Z.; Zhang, S. X. Curation and Analysis of Multitargeting Agents for Polypharmacological Modeling. J. Chem. Inf. Model. 2014, 54, 2536-2543. (57) Perna, A. M.; Reisen, F.; Schmidt, T. P.; Geppert, T.; Pillong, M.; Weisel, M.; Hoy, B.; Simister, P. C.; Feller, S. M.; Wessler, S.; Schneider, G. Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. Chem. Sci., 2014, 5, 3583-3590. (58) Luo, J. S.; Guo, Y.; Zhong, Y.; Ma, D.; Li, W.; Li, M. A functional feature analysis on diverse protein-protein interactions: application for the prediction of binding affinity. J. Comput. Aided. Mol. Des. 2014, 28, 619-629. (59) Luo, H.; Zhang, P.; Huang, H.; Huang, J.; Kao, E.; Shi, L.; He, L.; Yang, L. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome. Nucleic Acids Res. 2014, 42, W46-W52. (60) Lindblom, P. R.; Wu, G.; Liu, Z.; Jim, K. C.; Baldwin, J. J.; Gregg, R. E.; Claremon, D. A.; Singh, S. B. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour (R). J. Mol. Graph. Model., 2014, 53, 118-127. (61) Li, H. J.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 2014, 15. (62) Li, H. J.; Leung, K. S.; Ballester, P. J.; Wong, M. H. istar: A Web Platform for Large-Scale Protein-Ligand Docking. Plos One, 2014, 9. (63) Kuenemann, M. A.; Bourbon, L. M.; Labb¨¦, C. M.; Villoutreix, B. O.; Sperandio, O. Which Three-Dimensional Characteristics Make Efficient Inhibitors of Protein-Protein Interactions? J. Chem. Inf. Model. 2014, 54, 3067-3079. (64) Kastritis, P. L.; Rodrigues, J. P.; Folkers, G. E.; Boelens, R.; Bonvin, A. M. Proteins Feel More Than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface. J. Mol. Biol., 2014, 426, 2632-2652. (65) Hu, B. J.; Zhu, X.; Monroe, L.; Bures, M. G.; Kihara, D. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions. Int. J. Mol. Sci., 2014, 15, 15122-15145. (66) Hu, B.J.; Lill, M. A. PharmDock: a pharmacophore-based docking program. J. Cheminform., 2014, 6. (67) Grinter, S. Z.; Zou, X. Q. A Bayesian Statistical Approach of Improving Knowledge-Based Scoring Functions for Protein-Ligand Interactions. J. Comput. Chem., 2014, 35, 932-943. (68) Greenidge, P. A.; Kramer, C.; Mozziconacci, J. C.; Sherman, W. Improving Docking Results via Reranking of Ensembles of Ligand Poses in Multiple X-ray Protein Conformations with MM-GBSA. J. Chem. Inf. Model. 2014, 54, 2697-2717. (69) Gabel, J.; Desaphy, J.; Rognan, D. Beware of Machine Learning-Based Scoring Functions-On the Danger of Developing Black Boxes. J. Chem. Inf. Model. 2014, 54, 2807-2815. (70) Dunbar, J.; Krawczyk, K.; Leem, J.; Baker, T.; Fuchs, A.; Georges, G.; Shi, J.; Deane, C. M. SAbDab: the structural antibody database. Nucleic Acids Res. 2014, 42, D1140-D1146. (71) Cao, Y.; Li, L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics, 2014, 30, 1674-1680. (72) Cao, R.; Huang, N.; Wang, Y. L. Evaluation and Application of MD-PB/SA in Structure-Based Hierarchical Virtual Screening. J. Chem. Inf. Model. 2014, 54, 1987-1996. (73) Ballester, P. J.; Schreyer, A.; Blundell, T. L. Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity? J. Chem. Inf. Model. 2014, 54, 944-955. (74) Atkovska, K.; Samsonov, S. A. Paszkowski-Rogacz, M.; Pisabarro, M. T.; Multipose Binding in Molecular Docking. Int. J. Mol. Sci., 2014, 15, 2622-2645. (75) Anand, P.; Nagarajan, D.; Mukherjee, S.; Chandra, N. PLIC: protein-ligand interaction clusters. Database, 2014, 2014, bau029. 2013 (76) Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. Plos One, 2013, 8, e83922. (77) Zheng, Z.; Ucisik, M. N.; Merz, K. M. Jr. The Movable Type Method Applied to Protein-Ligand Binding. J. Chem. Theory Comput., 2013, 9, 5526-5538. (78) Liu, Y.; Xu, Z.; Yang, Z.; Chen, K.; Zhu, W. A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J. Mol. Model., 2013, 19, 5015-5030. (79) Korth, M. Error estimates for (semi-)empirical dispersion terms and large biomacromolecules. Org. Biomol. Chem., 2013, 11, 6515-6519. (80) Wang, W.; He, W.; Zhou, X.; Chen, X. Optimization of molecular docking scores with support vector rank regression. Proteins: Struct. Funct. Bioinfor., 2013, 81, 1386-1398. (81) Zilian, D.; Sotriffer, C. A. SFCscore(RF): A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes. J. Chem. Inf. Model. 2013, 53, 1923-1933. (82) Yilmazer, N. D.; Korth, M. Comparison of Molecular Mechanics, Semi-Empirical Quantum Mechanical, and Density Functional Theory Methods for Scoring Protein-Ligand Interactions. J. Phys. Chem. B, 2013, 117, 8075-8084. (83) Perot, S.; Regad, L.; Reyn¨¨s, C.; Sp¨¦randio, O.; Miteva, M. A.; Villoutreix, B. O.; Camproux, A. C. Insights into an Original Pocket-Ligand Pair Classification: A Promising Tool for Ligand Profile Prediction. Plos One, 2013, 8. (84) Wirth, M.; Volkamer, A.; Zoete, V.; Rippmann, F.; Michielin, O.; Rarey, M.; Sauer, W. H. Protein pocket and ligand shape comparison and its application in virtual screening. J. Comput. Aided. Mol. Des. 2013, 27, 511-524. (85) Beato, C.; Beccari, A. R.; Cavazzoni, C.; Lorenzi, S.; Costantino, G. Use of Experimental Design To Optimize Docking Performance: The Case of LiGenDock, the Docking Module of Ligen, a New De Novo Design Program. J. Chem. Inf. Model. 2013, 53, 1503-1517. (86) Schumann, M.; Armen, R. S. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure. J. Comput. Chem., 2013, 34, 1258-1269. (87) Zheng, Z.; Merz, K. M. Jr. Development of the Knowledge-Based and Empirical Combined Scoring Algorithm (KECSA) To Score Protein-Ligand Interactions. J. Chem. Inf. Model. 2013, 53, 1073-1083. (88) Hu, B.; Lill, M. A. Exploring the Potential of Protein-Based Pharmacophore Models in Ligand Pose Prediction and Ranking. J. Chem. Inf. Model. 2013, 53, 1179-1190. (89) Garcia-Sosa, A. T.; Maran, U. Drugs, non-drugs, and disease category specificity: organ effects by ligand pharmacology. SAR QSAR Environ Res., 2013, 24, 585-597. (90) Chen, J.; Sawyer, N.; Regan, L. Protein-protein interactions: General trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci., 2013, 22, 510-515. (91) Yuan, Y.; Pei, J.; Lai, L. Binding Site Detection and Druggability Prediction of Protein Targets for Structure-Based Drug Design. Curr. Pharm. Des., 2013, 19, 2326-2333. (92) Li, G. B.; Yang, L. L.; Wang, W. J.; Li, L. L.; Yang, S. Y. ID-Score: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions. J. Chem. Inf. Model. 2013, 53, 592-600. (93) Jalencas, X.; Mestres, J. Chemoisosterism in the Proteome. J. Chem. Inf. Model. 2013, 53, 279-292. (94) Pacholczyk, M.; Borys, D.; Kimmel, M. Finite absorbing Markov chain as a model of small-ligand binding process. IWBBIO Proceedings, 2013, 747. (95) Schneider, N.; Lange, G.; Hindle, S.; Klein, R.; Rarey, M. A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput. Aided. Mol. Des. 2013, 27, 15-29. (96) Greenidge, P. A.; Kramer, C.; Mozziconacci, J.C.; Wolf, R. M. MM/GBSA Binding Energy Prediction on the PDBbind Data Set: Successes, Failures, and Directions for Further Improvement. J. Chem. Inf. Model. 2013, 53, 201-209. (97) Jalencas, X.; Mestres, J. Identification of Similar Binding Sites to Detect Distant Polypharmacology. Mol. Inform., 2013, 32, 976-990. (98) Dhanik, A.; McMurray, J. S.; Kavraki, L. E. DINC: A new AutoDock-based protocol for docking large ligands. BMC Struct. Biol., 2013, 13. (99) Koppisetty, C. A.; Frank, M.; Kemp, G. J.; Nyholm, P. G. Computation of Binding Energies Including Their Enthalpy and Entropy Components for Protein-Ligand Complexes Using Support Vector Machines. J. Chem. Inf. Model. 2013, 53, 2559-2570. (100) Weber, J.; Achenbach, J.; Moser, D.; Proschak, E. VAMMPIRE: A Matched Molecular Pairs Database for Structure-Based Drug Design and Optimization. J. Med. Chem. 2013, 56, 5203-5207. (101) Garcia-Sosa, A. T. Hydration Properties of Ligands and Drugs in Protein Binding Sites: Tightly-Bound, Bridging Water Molecules and Their Effects and Consequences on Molecular Design Strategies. J. Chem. Inf. Model. 2013, 53, 1388-1405. (102) Houston, D. R.; Walkinshaw, M. D. Consensus Docking: Improving the Reliability of Docking in a Virtual Screening Context. J. Chem. Inf. Model. 2013, 53, 384-390. (103) Wang, K.; Gao, J.; Shen, S.; Tuszynski, J. A.; Ruan, J.; Hu, G. An Accurate Method for Prediction of Protein-Ligand Binding Site on Protein Surface Using SVM and Statistical Depth Function. Biomed. Res. Int. 2013, 2013, 409658 (104) Hou, X.; Du, J.; Zhang, J.; Du, L.; Fang, H.; Li, M. How to Improve Docking Accuracy of AutoDock4.2: A Case Study Using Different Electrostatic Potentials. J. Chem. Inf. Model. 2013, 53, 188-200. (105) Yang, J.; Roy, A.; Zhang, Y. BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res. 2013, 41, D1096-D1103. 2012 (106) Higueruelo, A. P.; Schreyer, A.; Bickerton, G. R. J.; Blundell, T. L.; Pitt, W. R. What Can We Learn from the Evolution of Protein-Ligand Interactions to Aid the Design of New Therapeutics? Plos One 2012, 7, e51472. (107) Cross, S.; Baroni, M.; Goracci, L.; Cruciani, G. GRID-Based Three-Dimensional Pharmacophores I: FLAPpharm, a Novel Approach for Pharmacophore Elucidation. J. Chem. Inf. Model. 2012, 52, 2587-2598. (108) Garcia-Sosa, A. T.; Oja, M.; Hetenyi, C.; Maran, U. DrugLogit: Logistic Discrimination between Drugs and Nondrugs Including Disease-Specificity by Assigning Probabilities Based on Molecular Properties. J. Chem. Inf. Model. 2012, 52, 2165-2180. (109) Thompson, A. D.; Dugan, A.; Gestwicki, J. E.; Mapp, A. K. Fine-Tuning Multiprotein Complexes Using Small Molecules. ACS Chem. Biol. 2012, 7, 1311-1320. (110) Kumar, A.; Zhang, K. Y. J. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. J. Comput. Aided Mol. Des. 2012, 26, 603-616. (111) Benson, M. L.; Faver, J. C.; Ucisik, M. N.; Dashti, D. S.; Zheng, Z.; Merz, K. M. Jr. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores. J. Comput. Aided Mol. Des. 2012, 26, 647-659. (112) Joung, J. Y.; Nam, K.-Y.; Cho, K.-H.; No, K. T. Ligand Aligning Method for Molecular Docking: Alignment of Property-Weighted Vectors. J. Chem. Inf. Model. 2012, 52, 984-995. (113) Perola, E.; Herman, L.; Weiss, J. Development of a Rule-Based Method for the Assessment of Protein Druggability. J. Chem. Inf. Model. 2012, 52, 1027-1038. (114) Wilson, G. L.; Lill, M. A. Towards a Realistic Representation in Surface-Based Pseudoreceptor Modeling: a PDB-Wide Analysis of Binding Pockets. Mol. Inform., 2012, 31, 259-271. (115) Yan, Z.; Wang, J. Specificity quantification of biomolecular recognition and its implication for drug discovery. Sci Rep. 2012, 2:309 (116) Hsu, K.-C.; Chen, Y.-F.; Yang, J.-M. GemAffinity: a scoring function for predicting binding affinity and virtual screening. Int J Data Min Bioinform., 2012, 6, 27-41. (117) Malisi, C.; Schumann, M.; Toussaint, N. C.; Kagayama, J.; Kohlbacher, O.; Hocker, B. Binding Pocket Optimization by Computational Protein Design. Plos One 2012, 7, e52505. (118) Dhanik, A.; McMurray, J. S.; Kavraki, L. E. Binding Modes of Peptidomimetics Designed to Inhibit STAT3. Plos One 2012, 7, e51603. (119) Garcia-Sosa, A. T.; Oja, M.; Hetenyi, C.; Maran, U. Disease-Specific Differentiation Between Drugs and Non-Drugs Using Principle Component Analysis of Their Molecular Descriptor Space. Mol. Inform., 2012, 31, 369-383. (120) Koes, D. R.; Camacho, C. J. Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Bioinformatics 2012, 28, 784-791. (121) Sitzmann, M.; Weidlich, I. E.; Filippov, I. V.; Liao, C.; Peach, M. L.; Ihlenfeldt, W.-D.; Karki, R. G.; Borodina, Y. V.; Cachau, R. E.; Nicklaus, M. C. PDB Ligand Conformational Energies Calculated Quantum-Mechanically. J. Chem. Inf. Model. 2012, 52, 739-756. 2011 (122) Ouyang, X.; Handoko, S. D.; Kwoh, C. K. CScore: A simple yet effective scoring function for protein-ligand binding affinity prediction using modified cmac learning architecture. J. Bioinform. Comput. Biol. 2011, 9, 1-14. (123) Zheng, Z.; Merz, K. M. Jr. Ligand Identification Scoring Algorithm (LISA). J. Chem. Inf. Model. 2011, 51, 1296-1306. (124) Zheng, M.; Xiong, B.; Luo, C.; Li, S.; Liu, X.; Shen, Q.; Li, J.; Zhu, W.; Luo, X.; Jiang, H. Knowledge-Based Scoring Functions in Drug Design: 3. A Two-Dimensional Knowledge-Based Hydrogen-Bonding Potential for the Prediction of Protein-Ligand Interactions. J. Chem. Inf. Model. 2011, 51, 2994-3004. (125) Yuan, Y.; Pei, J.; Lai, L. LigBuilder 2: A Practical de Novo Drug Design Approach. J. Chem. Inf. Model. 2011, 51, 1083-1091. (126) Yang, T.; Wu, J. C.; Yan, C.; Wang, Y.; Luo, R.; Gonzales, M. B.; Dalby, K. N.; Ren, P. Virtual screening using molecular simulations. Proteins: Struct. Funct. Bioinfor., 2011, 79, 1940-1951. (127) Wang, J. C.; Lin, J. H.; Chen, C. M.; Perryman, A. L.; Olson, A. J. Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. J. Chem. Inf. Model. 2011, 51, 2528-2537. (128) Tang, Y.T.; Marshall, G. R. PHOENIX: A Scoring Function for Affinity Prediction Derived Using High-Resolution Crystal Structures and Calorimetry Measurements. J. Chem. Inf. Model. 2011, 51, 214-228. (129) Takigawa, I.; Tsuda, K.; Mamitsuka, H. Mining Significant Substructure Pairs for Interpreting Polypharmacology in Drug-Target Network. Plos One, 2011, 6, e16999. (130) Smith, R. D.; Dunbar, J. B. Jr.; Ung, P. M.; Esposito, E. X.; Yang, C. Y.; Wang, S.; Carlson, H. A. CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions. J. Chem. Inf. Model. 2011, 51, 2115-2131. (131) Shen, Q.; Xiong, B.; Zheng, M.; Luo, X.; Luo, C.; Liu, X.; Du, Y.; Li, J.; Zhu, W.; Shen, J.; Jiang, H. Knowledge-Based Scoring Functions in Drug Design: 2. Can the Knowledge Base Be Enriched? J. Chem. Inf. Model. 2011, 51, 386-397. (132) Schneider, G.; Geppert, T.; Hartenfeller, M.; Reisen, F.; Klenner, A.; Reutlinger, M.; H?hnke, V.; Hiss, J. A.; Zettl, H.; Keppner, S.; Sp?nkuch, B.; Schneider, P. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med. Chem., 2011, 3, 415-424. (133) Ravitz, O.; Zsoldos, Z.; Simon, A. Improving molecular docking through eHiTS' tunable scoring function. J. Comput. Aided. Mol. Des. 2011, 25, 1033-1051. (134) Plewczynski, D.; ?a?niewski, M.; von Grotthuss, M.; Rychlewski, L.; Ginalski, K. VoteDock: Consensus Docking Method for Prediction of Protein-Ligand Interactions. J. Comput. Chem., 2011, 32, 568-581. (135) Plewczynski, D.; ?a?niewski, M.; Augustyniak, R.; Ginalski, K. Can We Trust Docking Results? Evaluation of Seven Commonly Used Programs on PDBbind Database. J. Comput. Chem., 2011, 32, 742-755. (136) Park, M.-S.; Gao, C.; Stern, H. A. Estimating binding affinities by docking/scoring methods using variable protonation states. Proteins: Struct. Funct. Bioinfor., 2011, 79, 304-314. (137) Novikov, F. N.; Novikov, F. N.; Zeifman, A. A.; Stroganov, O. V.; Stroylov, V. S.; Kulkov, V.; Chilov, G. G. CSAR Scoring Challenge Reveals the Need for New Concepts in Estimating Protein-Ligand Binding Affinity. J. Chem. Inf. Model. 2011, 51, 2090-2096. (138) Neudert, G.; Klebe, G. DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes. J. Chem. Inf. Model. 2011, 51, 2731-2745. (139) Lindstrom, A.; Edvinsson, L.; Johansson, A.; Andersson, C. D.; Andersson, I. E.; Raubacher, F.; Linusson, A. Postprocessing of Docked Protein-Ligand Complexes Using Implicit Solvation Models. J. Chem. Inf. Model. 2011, 51, 267-282. (140) Li, L.; Wang, B.; Meroueh, S. O. Support Vector Regression Scoring of Receptor-Ligand Complexes for Rank-Ordering and Virtual Screening of Chemical Libraries. J. Chem. Inf. Model. 2011, 51, 2132-2138. (141) Krasowski, A.; Muthas, D.; Sarkar, A.; Schmitt, S.; Brenk, R. DrugPred: A Structure-Based Approach To Predict Protein Druggability Developed Using an Extensive Nonredundant Data Set. J. Chem. Inf. Model. 2011, 51, 2829-2842. (142) Kramer, C.; Gedeck, P. Global Free Energy Scoring Functions Based on Distance-Dependent Atom-Type Pair Descriptors. J. Chem. Inf. Model. 2011, 51, 707-720. (143) Johnston, M. A.; Sondergaard, C. R.; Nielsen, J. E. Integrated prediction of the effect of mutations on multiple protein characteristics. Proteins: Struct. Funct. Bioinfor., 2011, 79, 165-178. (144) Fedichev, P. O.; Getmantsev, E. G.; Menshikov, L. I. O(NlogN) Continuous Electrostatics Method for Fast Calculation of Solvation Energies of Biomolecules. J. Comput. Chem., 2011, 32, 1368-1376. (145) Durrant, J. D.; McCammon, J. A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model., 2011, 29, 888-893. (146) Durrant, J. D.; McCammon, J. A. HBonanza: A computer algorithm for molecular-dynamics-trajectory hydrogen-bond analysis. J. Mol. Graph. Model., 2011, 31, 5-9. (147) Durrant, J. D.; McCammon, J. A. NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function. J. Chem. Inf. Model. 2011, 51, 2897-2903. (148) Dunbar, J. B., Jr.; Smith, R. D.; Yang, C.Y.; Ung, P. M.; Lexa, K. W.; Khazanov, N. A.; Stuckey, J. A.; Wang, S.; Carlson, H. A. CSAR Benchmark Exercise of 2010: Selection of the Protein-Ligand Complexes. J. Chem. Inf. Model. 2011, 51, 2036-2046. (149) Cao, Y.; Koh, X.; Dong, L.; Du, X.; Wu, A.; Ding, X.; Deng, H.; Shu, Y.; Chen, J.; Jiang, T. Rapid Estimation of Binding Activity of Influenza Virus Hemagglutinin to Human and Avian Receptors. Plos One, 2011, 6. (150) Ballester, P. J.; Mitchell, J. B. O. Comments on "Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets": Significance for the Validation of Scoring Functions. J. Chem. Inf. Model. 2011, 51, 1739-1741. 2010 (151) Liu, X. F.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38, W609-W614. (152) Kramer, C.; Gedeck, P. Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets. J. Chem. Inf. Model. 2010, 50, 1961-1969. (153) Volkamer, A.; Griewel, A.; Grombacher, T.; Rarey, M. Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets. J. Chem. Inf. Model. 2010, 50, 2041-2052. (154) Durrant, J. D.; McCammon, J. A. NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes. J. Chem. Inf. Model. 2010, 50, 1865-1871. (155) Abad-Zapatero, C.; Peri?i?, O.; Wass, J.; Bento, A. P.; Overington, J.; Al-Lazikani, B.; Johnson, M. E. Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Drug Discov. Today 2010, 15, 804-811. (156) Meier, R.; Pippel, M.; Brandt, F.; Sippl, W.; Baldauf, C. PARADOCKS: A Framework for Molecular Docking with Population-Based Metaheuristics. J. Chem. Inf. Model.2010, 50, 879-889. (157) Gao, C.; Park, M.S.; Stern, H. A. Accounting for Ligand Conformational Restriction in Calculations of Protein-Ligand Binding Affinities. Biophys. J. 2010, 98, 901-910. (158) Huang, S. Y.; Zou, X. Q. Inclusion of Solvation and Entropy in the Knowledge-Based Scoring Function for Protein-Ligand Interactions. J. Chem. Inf. Model. 2010, 50, 262-273. (159) Das, S.; Krein, M. P.; Breneman, C. M. Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures. J. Chem. Inf. Model. 2010, 50, 298-308. (160) Garcia-Sosa, A. T.; Het¨¦nyi, C.; Maran, U. Drug Efficiency Indices for Improvement of Molecular Docking Scoring Functions. J. Comput. Chem., 2010, 31, 174-184. (161) Reisen, F.; Weisel, M.; Kriegl, J. M.; Schneider, G. Self-Organizing Fuzzy Graphs for Structure-Based Comparison of Protein Pockets. J. Proteome Res., 2010, 9, 6498-6510. (162) Ballester, P. J.; Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169-1175. 2009 (163) Das, S.; Kokardekar, A.; Breneman, C. M. Rapid Comparison of Protein Binding Site Surfaces with Property Encoded Shape Distributions. J. Chem. Inf. Model. 2009, 49, 2863-2872. (164) Ajmani, S.; Karanam, S.; Kulkarni, S. A. Rationalizing Protein-Ligand Interactions for PTP1B Inhibitors Using Computational Methods. Chem. Biol. Drug Des., 2009, 74, 582-595. (165) Chung, J. Y.; Hah, J. M.; Cho, A. E. Correlation between Performance of QM/MM Docking and Simple Classification of Binding Sites. J. Chem. Inf. Model. 2009, 49, 2382-2387. (166) S?ndergaard, C. R.; Garrett, A. E.; Carstensen, T.; Pollastri, G.; Nielsen, J. E. Structural Artifacts in Protein-Ligand X-ray Structures: Implications for the Development of Docking Scoring Functions. J. Med. Chem. 2009, 52, 5673-5684. (167) Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 4. Are Popular Scoring Functions Accurate for this Class of Proteins? J. Chem. Inf. Model. 2009, 49, 1568-1580. (168) Li, S. Y.; Xi, L.; Wang, C.; Li, J.; Lei, B.; Liu, H.; Yao, X. A Novel Method for Protein-Ligand Binding Affinity Prediction and the Related Descriptors Exploration. J. Comput. Chem. 2009, 30, 900-909. (169) Liu, J. T.; Faeder, J. R.; Camacho, C. J. Toward a quantitative theory of intrinsically disordered proteins and their function. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19819-19823. (170) Halgren, T. A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009, 49, 377-389. 2008 (171) Stroganov, O. V.; Novikov, F. N.; Stroylov, V. S.; Kulkov, V.; Chilov, G. G. Lead Finder: An Approach To Improve Accuracy of Protein-Ligand Docking, Binding Energy Estimation, and Virtual Screening. J. Chem. Inf. Model. 2008, 48, 2371-2385. (172) Sotriffer, C. A.; Sanschagrin, P.; Matter, H.; Klebe, G. SFCscore: Scoring functions for affinity prediction of protein-ligand complexes. Proteins: Struct. Funct. Bioinfor., 2008, 73, 395-419. (173) Zhao, X. Y.; Liu, X.; Wang, Y.; Chen, Z.; Kang, L.; Zhang, H.; Luo, X.; Zhu, W.; Chen, K.; Li, H.; Wang, X.; Jiang, H. L. An improved PMF scoring function for universally predicting the interactions of a ligand with protein, DNA, and RNA. J. Chem. Inf. Model. 2008, 48, 1438-1447. (174) Raub, S.; Steffen, A.; K?mper, A.; Marian, C. M. AIScore - Chemically diverse empirical scoring function employing quantum chemical binding energies of hydrogen-bonded complexes. J. Chem. Inf. Model. 2008, 48, 1492-1510. (175) Seebeck, B.; Reulecke, I.; K?mper, A.; Rarey, M. Modeling of metal interaction geometries for protein-ligand docking. Proteins: Struct. Funct. Bioinfor., 2008, 71, 1237-1254. (176) Kalidas, Y.; Chandra, N. PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins. J. Struct. Biol., 2008, 161, 31-42. (177) Str?mbergsson, H.; Daniluk, P.; Kryshtafovych, A.; Fidelis, K.; Wikberg, J. E.; Kleywegt, G. J.; Hvidsten, T. R. Interaction Model Based on Local Protein Substructures Generalizes to the Entire Structural Enzyme-Ligand Space. J. Chem. Inf. Model. 2008, 48, 2278-2288. (178) Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N. V. MedusaScore: An accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model. 2008, 48, 1656-1662. (179) Kim, R.; Skolnick, J. Assessment of programs for ligand binding affinity prediction. J. Comput. Chem. 2008, 29, 1316-1331. (180) Panigrahi, S. K. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study. Amino Acids 2008, 34, 617-633. (181) Pham, T. A.; Jain, A. N. Customizing scoring functions for docking. J. Comput. Aided. Mol. Des. 2008, 22, 269-286. 2007 (182) Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J. Chem. Inf. Model. 2007, 47, 435-449. (183) Hartshorn, M.J.; Verdonk, M. L.; Chessari, G.; Brewerton, S. C.; Mooij, W. T.; Mortenson, P. N.; Murray, C. W. Diverse, high-quality test set for the validation of protein-ligand docking performance. J. Med. Chem. 2007, 50, 726-741. (184) Jain, T.; Jayaram, B. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Proteins: Struct. Funct. Bioinfor., 2007, 67, 1167-1178. (185) Ji, H. F.; Kong, D. X.; Shen, L.; Chen, L. L.; Ma, B. G.; Zhang, H. Y. Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery. Genome Biol., 2007, 8, R716. (186) Peltason, L.; Bajorath, J. SAR index: Quantifying the nature of structure - Activity relationships. J. Med. Chem. 2007, 50, 5571-5578. (187) Peltason, L.; Bajorath, J. Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chem. Biol., 2007, 14, 489-497. 2006 (188) Chen, J.; Lai, L. H. Pocket v.2: Further developments on receptor-based pharmacophore modeling. J. Chem. Inf. Model. 2006, 46, 2684-2691. (189) Coleman, R.G.; Sharp, K. A. Travel depth, a new shape descriptor for macromolecules: Application to ligand binding. J. Mol. Biol., 2006, 362, 441-458. (190) Han, L.Y.; Lin, H. H.; Li, Z. R.; Zheng, C. J.; Cao, Z. W. Xie, B.; Chen, Y. Z. PEARLS: Program for energetic analysis of receptor-ligand system. J. Chem. Inf. Model. 2006, 46, 445-450. (191) Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for molecular docking. J. Med. Chem. 2006, 49, 6789-6801. (192) Moore, N.W.; Kuhl, T. L. The role of flexible tethers in multiple ligand-receptor bond formation between curved surfaces. Biophys. J., 2006, 91, 1675-1687. (193) Renner, S.; Schwab, C. H.; Gasteiger, J.; Schneider, G. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J. Chem. Inf. Model. 2006, 46, 2324-2332. (194) Pham, T.A.; Jain, A. N. Parameter estimation for scoring protein-ligand interactions using negative training data. J. Med. Chem. 2006, 49, 5856-5868. (195) Oloff, S.; Zhang, S.; Sukumar, N.; Breneman, C.; Tropsha, A. Chemometric analysis of ligand receptor complementarity: Identifying complementary ligands based on receptor information (CoLiBRI). J. Chem. Inf. Model. 2006, 46, 844-851. (196) Muegge, I., PMF scoring revisited. J. Med. Chem. 2006, 49, 5895-5902. (197) Lindstrom, A.; Pettersson, F.; Almqvist, F.; Berglund, A.; Kihlberg, J.; Linusson, A. Hierarchical PLS modeling for predicting the binding of a comprehensive set of structurally diverse protein-ligand complexes. J. Chem. Inf. Model. 2006, 46, 1154-1167.